Te explicamos como funciona un reactor de fusión nuclear

En primer lugar, debemos saber que los reactores de fusión con los que se trabaja en la actualidad son de tipo experimental y no generan aún energía para inyectar en la red eléctrica.

Sin embargo, existe toda una serie de proyectos internacionales dirigidos a conseguir el primer reactor de uso comercial. Esto conlleva pasar por el ITER, un reactor experimental de fusión que se está construyendo en Francia, del que se espera que genere el primer plasma en el año 2025 y en el que participan, además de la Unión Europea, Estados Unidos, Japón, China, India, Rusia y Corea del Sur.

El ITER pretende ser el primer reactor con el que se consiga un proceso de fusión de eficiencia positiva, es decir, que genere más energía de la que se necesita para mantener el plasma (mezcla de deuterio y tritio a millones de grados). El siguiente paso será construir un reactor de demostración, DEMO, y después pasaríamos a construir reactores comerciales que producirían energía para inyectar en la red eléctrica.

Un poco de historia

La investigación en la energía de fusión tuvo un empujón importante durante la crisis del petróleo de los años setenta. Pero la fusión como fuente de energía ha sido un reto más complejo de lo que se había previsto. Esto ha obligado a hacer un proceso de rediseño para abordar cada dificultad que se ha presentado.

Los avances que ha habido tanto en física como en ingeniería han permitido ir superando todos los problemas. Como ejemplo, la contención del plasma exige el uso de campos magnéticos enormes, en espacios bastante grandes, y este reto ha venido facilitado por los avances en la superconductividad, gracias a la cual se han conseguido electroimanes muy potentes.

Generación de energía limpia

Entrando en los aspectos operacionales de los reactores de fusión, estos tienen como objetivo generar electricidad y, en esto, no son muy distintos a los actuales reactores nucleares, donde es la fisión (ruptura de núcleos de materiales pesados) la que genera la energía necesaria para la producción eléctrica.

La comparación entre los dos tipos de reactores solo llega hasta ahí, ya que constructivamente son muy diferentes. En un reactor de fusión, el plasma caliente está confinado magnéticamente dentro de una vasija donde se ha practicado lo que llamamos ultraalto vacío, que es el máximo que puede conseguirse.

Fruto de las reacciones de fusión se producen neutrones que salen de ese choque con mucha energía e impactan en una pared preparada en la que se capta dicha energía. A partir de ahí el proceso ya es como en la energía nuclear de fisión, la energía llega a un circuito que calienta agua y que va a una turbina para enviarla a la red de distribución eléctrica.

Un combustible inagotable

Un reactor de fusión tiene una complejidad tecnológica añadida que, sin embargo, en la práctica, es una tremenda ventaja: se trata de la regeneración del combustible durante el proceso de fusión. El tritio es un elemento que no existe en la naturaleza y que se obtiene, precisamente, en las centrales nucleares de fisión.

Lo que aparentemente podría parecer una gran contradicción (necesitar reactores de fisión para que funcionen los de fusión) queda resuelta porque en los reactores de fusión se han diseñado unos dispositivos denominados mantos regeneradores que cubren la primera pared de la cámara donde está el plasma y cuya misión es precisamente regenerar tritio.

Este proceso se consigue gracias a que la energía de los neutrones excedentes del proceso de fusión (deuterio + tritio → helio + neutrón + energía) favorecen otra reacción dentro de esos dispositivos que regenera el tritio a partir de una mezcla circulante de litio-plomo para reinyectarlo de nuevo en el plasma. De esta manera, solo necesitaremos producir un poco de tritio para el arranque de la fusión. Nuestros combustibles primarios serían el deuterio (del agua) y el litio.

Una energía segura

En último lugar, la fusión nuclear no tiene reacciones en cadena que requieren procesos de parada de la reacción complejos ni genera residuos de alta actividad. En un reactor de fusión, en caso de fallo, se apaga la reacción de forma espontánea, ya que el plasma es en sí muy “delicado” y la más mínima perturbación hace que se enfríe y se extinga.

Deja una respuesta

Tu email nunca se publicará.

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.